Logo

Angle & Trigonometric Ratio

(a) Sexagesimal  (or English) System:

Sexagesimal  (or English) System

(b) Centesimal (OR French System):

Centesimal (OR French System)

(c) Circular System:

Circular System

Relation between three systems of measurement of angle

measurement of angle

 

Area of a Sector of a Circle:

Let AOB be a sector of a circle, centre O, radius r. Let ∠APB = θ radian arc AB = l. Then Area of the sector AOB = (1/2)r2 θ.

Area of a Sector of a Circle

 

Trigonometric Function:

(1) Fundamental Identities

sin2 θ + cos2 θ = 1

1 + tan2 θ = sec2 θ

1 + cos2 θ = cosec2

(2) Signs of Trigonometric ration is quadrants

Angle θ & (90◦ – θ◦) are complementary angles, θ &  (180◦ – θ◦) are supplementary angles.

Trigonometric ration

are complementary angles

are complementary angles

are complementary angles

cos n π = (–1)n, n ∊ l

sin π  = 0, n ∊ l

cos (nπ/2) = 0 if n is odd integer

cos(nπ + θ) = (–1)n cos θ, if n ∊ l

cos(nπ + θ) = (–1)n sin θ, if n ∊ l

cos(2nπ ± θ) = cos θ, n ∊ l

tan(nπ ± θ) = tan θ, n 0 ∊ l

 

Trigonometric Ratio of Compound Angles:

(1)   sin(A ± B) = sin A cos B ± cos A sin B

cos(A ± B) = cos A cos ∓ sin A sin B

tan (A ± B) = (tan A ± tan B)/(1 ∓ tan A tan B)

(2)    sin 2A = 2 sin A cos A  = (2 tan A)/(1 + tan2 A)

cos 2A = cos2 A – sin2 A = 2 cos2 A – 1 = 1 – 2 sin2 A = ((1 – tan2 A) / (1 + tan2 A)) tan 2A = (2 tan A)/(1 – tan2 A)

(3)    Trigonometric Ratio of Compound Angles

Trigonometric Ratio of Compound Angles

Trigonometric Ratio of Compound Angles

Trigonometric Ratio of Compound Angles

 

Sum and Difference Formulae:

(1) Sum and Difference Formulae

(2) Sum and Difference Formulae Sum and Difference Formulae

(3) sin(A + B) sin (A – B) = sin2 A – sin2 B = cos2 B – cos2 A

(4) cos(A + B) cos(A – B) = cos2 A – sin2 B

(5) sin 3θ = 3 sin θ – 4 sin3 θ

(6) cos 3θ = 4 cos3 θ – 3 cos θ

(7) Sum and Difference Formulae

(8) Sum and Difference Formulae

(9) Sum and Difference Formulae

(10) Sum and Difference Formulae

 

Product into Sum or Difference:

2 sin A cos B = sin (A + B) + sin (A – B)

2 cos A sin B = sin (A + B) – sin (A – B)

2 cos A cos B = cos (A + B) + cos (A – B)

2 sin A sin B = cos (A – B) – cos (A + B)

 

T-Ratios of the Sum of Three or more Angles:

sin (A + B + C) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C – sin A sin B sin C   

OR

sin (A + B + C) = cos A cos B cos C (tan A + tan B + tan C – tan A tan B tan C)

cos (A + B + C) = cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C  

OR

cos (A + B + C) = cos A cos B cos C (1 – tan A tan B – tan B tan C – tan C tan A)

T-Ratios

If A + B + C = π, then

(a) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C

(b) sin A + sin B + sin C = Angles

(c) cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C

(d) cos A + cos B + cos C = Angles

(e) Angles

(f) tan A + tan B + tan C = tan A tan B tan C

(g) Angles

(h) cot A cot B + cot B cot C + cot C cot A = 1

(i) tan A tan B + tan B tan C + tan C tan A = 1 + sec A sec B sec C

The solution consisting of all possible solutions of a trigonometric equation is called its general solution.

sin θ = 0 ⇒ θ = nπ

cos θ  = 0 ⇒ θ = (2n + 1)(π/2)

tan θ = 0 ⇒ θ = nπ

sin θ = sin α ⇒ θ = nπ + (–1)n, α, α ∊ [(–(π/2)), (π/2)]

cos θ = cos α ⇒ θ = 2nπ ± α; α ∊ [0, π]

tan θ = tan α ⇒ θ = nπ + α; α ∊ [(–(π/2)), (π/2)]

trigonometric equation

 

Principal Value:

Numerically least value of the angle is called its principal value.